‘Microswimmer’ robots to drill through blocked arteries within four years

Swarms of microscopic, magnetic, robotic beads could be used within five years by vascular surgeons to clear blocked arteries. These minimally invasive microrobots, which look and move like corkscrew-shaped bacteria, are being developed by an $18-million, 11-institution research initiative headed by the Korea Evaluation Institute of Industrial Technologies (KEIT).

These “microswimmers” are driven and controlled by external magnetic fields, similar to how nanowires from Purdue University and ETH Zurich/Technion (recently covered on KurzweilAI) work, but based on a different design.

Instead of wires, they’re made from chains of three or more iron oxide beads, rigidly linked together via chemical bonds and magnetic force.

The beads are put in motion by an external magnetic field that causes each of them to rotate. Because they are linked together, their individual rotations cause the chain to twist like a corkscrew and this movement propels the microswimmer.

The chains are small enough­­ — the nanoparticles are 50–100 nanometers in diameter — that they can navigate in the bloodstream like a tiny boat, Fantastic Voyage movie style (but without the microscopic humans) via a catheter to navigate directly to the blocked artery, where a drill would clear it completely.

via ‘Microswimmer’ robots to drill through blocked arteries within four years | KurzweilAI.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s